
8 The Delphi Magazine Issue 58

Easy Web Controls
by Paul Warren

Wonderful though they are,
Borland’s WebBroker com-

ponents can seem like a step back-
ward in the world of visual
programming. I just can’t get used
to not being able to use most of my
components. True, most compo-
nents are controls designed for the
user interface and wouldn’t make
sense for a web application. But
what about data presentation?
Many controls are exclusively or
partially used for data presenta-
tion. In this case it might make
sense to be able to drop a visual
component on a WebModule form.

Suppose for a moment we could
drop a visual component on a
WebModule. What could this do
for us?

Let’s say we wanted to create a
web application in which a user
could access a calendar with his or
her monthly appointments high-
lighted. We start by creating a new
web application, drop a PagePro-
ducer on the form, write a few lines
of HTML including an <IMG SRC="">
tag, and drop a calendar compo-
nent beside the PageProducer. A few
more lines of code in an event and
the web application is done.

When the application is
accessed it first returns the HTML
to the browser then, when the
browser requests the image, it
sends the image of the calendar. Is
this a pipe dream or can we
actually do this?

We can, and it’s not difficult. So
let’s start creating web controls!

Wrap It Up
We first need to get around the
restriction against using visual
components on a web module. Any
component you want to drop on a
web module must be non-visual,
that is, it must descend from
TComponent. This means that to use
a TControl descendant we have to
create a wrapper around it. The
wrapper will descend from
TComponent and own the control we
want to use.

Since we will want to create a
number of these control ‘wrap-
pers’ we should create a base class
first. Listing 1 shows the partial
declaration of a component that
will own a TControl descendant.
We’ll include Width and Height
properties, since we will almost
certainly need to set the width and
height of the underlying control.

I have also included a
ContentAsStream property to pro-
vide output to the Response.
ContentStream method. This way,
when we decide how we want to
provide the output, it will be easy
to pass to the web browser. For the
same reason, there is a ContentType
property to write out whatever
content type we wish to pass. The
reasons for this design decision
will become clearer later on; for
now, let’s see how we can provide
useful output from our web
controls.

TWinControl.PaintTo
A couple of years ago I discovered
the PaintTo method introduced in
the TWinControl class. PaintTo
takes as parameters a handle to a
device context and two coordi-
nates. PaintTo is one of those
incredibly useful methods that
Borland tucks away in the VCL
library here and there, with little or
no documentation. If you want a
control to copy itself to a bitmap
then you need PaintTo.

It works by merging the device
context (or canvas) passed for its
own canvas temporarily and then
forcing a repaint. I have used this
method to give some of my compo-
nents printout capabilities that
would otherwise be difficult and
tedious.

To see if PaintTo can help
develop web controls let’s try a
little experiment. Place a TImage
and a button on a form and in the
OnClick event put the code shown
in Listing 2. This should copy a
dynamically created TStringGrid’s
Canvas to the image. Unfortunately,
if you try to run the code you will
get an exception claiming the

type
TWebComponent = class(TComponent)
private
FWidth: integer;
FHeight: integer;
FControl: TControl;
FContentType: string;
function GetContentAsStream: TStream; virtual; abstract;

protected
public
property ContentAsStream: TStream read GetContentAsStream;
property ContentType: string read FContentType write FContentType;
property Width: integer read FWidth write SetWidth default 200;
property Height: integer read FHeight write SetHeight default 150;

published
end;

procedure TForm1.Button1Click(Sender: TObject);
var
TB: TStringGrid;
BM: TBitmap;

begin
TB := TStringGrid.Create(nil);
try
BM := TBitmap.Create;
try
BM.Width := TB.Width;
BM.Height := TB.Height;
BM.Canvas.Lock;
try
TB.PaintTo(BM.Canvas.Handle, 0, 0);

finally
BM.Canvas.Unlock;

end;
Image1.Picture.Bitmap.Assign(BM);

finally
BM.Free;

end;
finally
TB.Free;

end;
end;

➤ Above: Listing 1 ➤ Below: Listing 2



10 The Delphi Magazine Issue 58

control (TStringGrid) has no
parent. This is, of course, a bit of a
setback, but we could try creating
a dummy form as the parent and
see if that works. Listing 3 shows
the new code. This time it works
fine, though with some overhead.

It seems PaintTo may help by
giving us a bitmap representation
of the control. What about non-
windowed controls, they don’t
have a PaintTo method? Obviously
we’ll need to develop a different
way of obtaining a visual represen-
tation for these controls. Before
looking at this, however, let’s
extend our component class to
handle TWinControl descendants.
Listing 4 shows a component dec-
laration descended from TWeb-
Control. To make its purpose clear
I have called it TWebWinControl.

The only change here is to
override the GetContentAsStream
abstract method to return the
component image as a stream. The
code is the same as Listing 3.

All components that descend
from TWebWinControlwill inherit the
ability to return their visual repre-
sentations, so we need no further
code. Non-windowed controls, on
the other hand, are a little more
difficult. Since they don’t inherit
the PaintTo method we will have to
descend them from TWebControl
directly and supply each one with a
method to provide ouput.

That’s enough theory to get us
started: let’s create a component.

A Web Calendar
We’ll start with a windowed
control, as it already has the
primary functionality. Let’s encap-
sulate my TRngSelCalendar, a string

grid descendant that implements a
calendar with the ability to add
strings to the days and select a
range of days. Listing 5 shows the
declaration and a sample of the
methods (the full source is, as
always, included on the disk).

Apart from creating and freeing
the ‘wrapped’ TRngSelCalendar, the
component consists exclusively of
property access methods. Notice
that all the property access meth-
ods do is pass the values through
to the true control. This way the
developer can set properties and
write event code as usual.

We now have a functional
semi-visual web control that will
give the output in Figure 1 when
accessed by a web browser. Before
we take the final step to a web con-
trol that can truly be called visual,
let’s see how to handle a non-
windowed control.

A Rotatable Label
There are really two
solutions to handling
non-windowed controls.
The first is used for third
party controls where you
may not have the source
or the right to modify the
source. As an example,
we’ll use a third party
control that can display
rotated text. Since the

control is third party I can only
supply the compiled unit, so you
need to be using Delphi 5 for this
example.

The first thing we must do is
create a descendant of TXLabel
(the third party component) and
supply it with a PaintTo method.
The code is shown in Listing 6.
This is almost the same as PaintTo
in TWinControl (from Controls.pas)
except that I have removed all the
code that draws borders, etc.

Basically the code merges the
supplied device context with the
controls canvas using Intersect-
ClipRect and forces a repaint using
the Perform method. It’s too bad
Borland didn’t introduce this
method earlier in the VCL
hierarchy, since it would have
saved us a lot of work. They could
have made it virtual and overriden
the method in TWinControl to give
the complete functionality.

Now, if we create a component
wrapper descended from TWeb-
Control, we can create a web
control to display rotated text. The

procedure TForm1.Button1Click(Sender: TObject);
var
Dummy: TForm;
TB: TStringGrid;
BM: TBitmap;

begin
Dummy := TForm.Create(application);
try
TB := TStringGrid.Create(Dummy);
try
TB.Parent := Dummy;
BM := TBitmap.Create;
try
BM.Width := TB.Width;
BM.Height := TB.Height;
BM.Canvas.Lock;
try
TB.PaintTo(BM.Canvas.Handle,0,0);

finally
BM.Canvas.Unlock;

end;
Image1.Picture.Bitmap.Assign(BM);

finally
BM.Free;

end;
finally
TB.Free;

end;
finally
Dummy.Free;

end;
end;

TWebWinControl = class(TWebControl)
private
function GetContentAsStream:
TStream; override;

protected
public
published
end;

➤ Listing 4

➤ Figure 1

➤ Listing 3



12 The Delphi Magazine Issue 58

code is shown in Listing 7. The
property access methods are the
same as in TWebCalendar.

You may have noticed the Output
property and wondered what that
is all about. Don’t we already
supply the output in a stream?

Really Visual Web Controls
I wanted to be able to use these
components the same way we use
all our visual components, but that
really isn’t possible since a web

TWebCalendar = class(TWebWinControl)
private
FOnNeedStrings: TNeedStrings;
function GetBlockWeekends: boolean;
function GetBlockedColor: TColor;
function GetFixedHeader: boolean;
function GetRangeColor: TColor;
function GetStartDate: TDateTime;
function GetEndDate: TDateTime;
function GetCalendarDate: TDateTime;
procedure SetHeight(Value: integer);
procedure SetWidth(Value: integer);
procedure SetBlockWeekends(Value: Boolean);
procedure SetBlockedColor(Value: TColor);
procedure SetCalendarDate(Value: TDateTime);
procedure SetFixedHeader(Value: Boolean);
procedure SetRangeColor(Value: TColor);
procedure SetStartDate(Value: TDateTime);
procedure SetEndDate(Value: TDateTime);

protected
procedure DoNeedStrings(Sender: TObject; ACol, ARow:
Integer; ADate: TDateTime; var Value: TStringList);

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
property Width: integer read FWidth
write SetWidth default 200;

property Height: integer read FHeight
write SetHeight default 150;

property BlockWeekends: Boolean read GetBlockWeekends
write SetBlockWeekends default false;

property BlockedColor: TColor read GetBlockedColor
write SetBlockedColor default clGray;

property CalendarDate: TDateTime read GetCalendarDate
write SetCalendarDate stored false;

property FixedHeader: Boolean read GetFixedHeader
write SetFixedHeader default True;

property RangeColor: TColor read GetRangeColor
write SetRangeColor default clBlue;

property StartDate: TDateTime read GetStartDate
write SetStartDate;

property EndDate: TDateTime read GetEndDate
write SetEndDate;

property OnNeedStrings: TNeedStrings read FOnNeedStrings
write FOnNeedStrings;

property ContentType;
end;

constructor TWebCalendar.Create(AOwner: TComponent);
begin
inherited Create(AOwner);

// set default properties
FContentType := 'image/jpeg';
FWidth := 200;
FHeight := 150;
// create underlying calendar
FControl := TRngSelCalendar.Create(nil);
// set calendar properties
FControl.Width := FWidth;
FControl.Height := FHeight;
(FControl as TRngSelCalendar).OnNeedStrings :=

DoNeedStrings;
end;
destructor TWebCalendar.Destroy;
begin
FControl.Free;
inherited Destroy;

end;
procedure TWebCalendar.DoNeedStrings(Sender: TObject; ACol,
ARow: Integer; ADate: TDateTime; var Value: TStringList);

begin
if Assigned(FOnNeedStrings) then
FOnNeedStrings(Sender, ACol, ARow, ADate, Value);

end;
procedure TWebCalendar.SetHeight(Value: integer);
begin
// make sure to change the calendar properties when
// changing the components properties
if Value <> FHeight then begin
FHeight := Value;
(FControl as TRngSelCalendar).Height := FHeight;

end;
end;
procedure TWebCalendar.SetWidth(Value: integer);
begin
// make sure to change the calendar properties when
// changing the components properties
if Value <> FWidth then begin
FWidth := Value;
(FControl as TRngSelCalendar).Width := FWidth;

end;
end;
function TWebCalendar.GetBlockWeekends: boolean;
begin
Result := (FControl as TRngSelCalendar).BlockWeekends;

end;
procedure TWebCalendar.SetBlockWeekends(Value: Boolean);
begin
(FControl as TRngSelCalendar).BlockWeekends := Value;

end;

module is not a form and can’t own
controls. However, there is a way
we can sort of beat the system.
Since we have a bitmap representa-
tion of the control, why not pass it
to a property editor? This way we
can see the component at design-
time. We don’t even need to write a
property editor, since one already
exists for type TBitmap.

All we need to do is declare a
published property called Output
and provide access methods for it.
Since we will want all our compo-
nents to work the same way we will
add the property to the ancestor
class TWebControl. In the unlikely
event that we derive a class that
doesn’t output a graphic represen-
tation we’ll have to supply a
graphic or override the methods to
do nothing: a small price to pay.

After installing the TWebRotated-
Label component we can set its
properties and view the output by
clicking the ellipsis next to the
output method. The result can be
seen in Figure 2. Pretty cool if I do
say so myself. Now let’s look at the

second method of creating non-
windowed web controls.

A Web Chart
I created TXYChart several years
ago to do some limited statistical
charting. I didn’t need the bells and
whistles available in most charting
packages and I certainly didn’t
want to interface with Excel or
some other application. I needed
to supply printed output, though,

type
TRotatedLabel = class(TXLabel)
public
procedure PaintTo(DC: HDC;
X, Y: Integer);

end;
procedure TRotatedLabel.PaintTo(
DC: HDC; X, Y: Integer);

var
SaveIndex: Integer;

begin
SaveIndex := SaveDC(DC);
MoveWindowOrg(DC, X, Y);
IntersectClipRect(DC, 0, 0,
Width, Height);
Perform(WM_ERASEBKGND, DC, 0);
Perform(WM_PAINT, DC, 0);
RestoreDC(DC, SaveIndex);

end;

➤ Listing 5

➤ Listing 6

➤ Figure 2



June 2000 The Delphi Magazine 13

TWebRotatedLabel = class(TWebControl)
private
function GetContentAsStream: TStream; override;
{ ...see disk for full declaration... }
function GetOutput: TBitmap; override;

protected
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;

published
{ ...see disk for full declaration... }

end;
constructor TWebRotatedLabel.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FContentType := 'image/jpeg';
FWidth := 200;
FHeight := 150;
FControl := TRotatedLabel.Create(nil);
FControl.Width := FWidth;
FControl.Height := FHeight;
(FControl as TRotatedLabel).Caption := 'Rotating Label';

end;
destructor TWebRotatedLabel.Destroy;
begin
FControl.Free;
inherited Destroy;

end;
function TWebRotatedLabel.GetOutput: TBitmap;
begin
Result := TBitmap.Create;

try
Result.Width := FControl.Width;
Result.Height := FControl.Height;
Result.Canvas.Lock;
try
(FControl as

TRotatedLabel).PaintTo(Result.Canvas.Handle, 0, 0);
finally
Result.Canvas.Unlock;

end;
except
Result.Free;
raise;

end;
end;
function TWebRotatedLabel.GetContentAsStream: TStream;
var
Jpg: TJpegImage;
S: TMemoryStream;

begin
Jpg := TJpegImage.Create;
try
Jpg.Assign(Output);
S := TMemoryStream.Create;
Jpg.SaveToStream(S);
S.Position := 0;
Result := S;

finally
Jpg.Free;

end;
end;

➤ Listing 7
so I took advantage of the PaintTo
idea and created my own PaintTo
method as described above.

This, then, is the second way to
handle non-windowed controls:
include a PaintTomethod as part of
a control that you want to use as a
web control. This can, of course,
be done in an ancestor class, so all

derived controls inherit the ability
to reproduce themselves. As a by-
product you have an easy way of
printing these controls.

I haven’t reproduced any of the
code for TWebChart here since it is
all the same. I have, however,
included the source to my charts
unit on the disk. I recently added a

TPieChart class to the charts unit
and you can see the output in
Figure 3.

Using Web Controls
Now let us see if these new web
controls can really simplify



14 The Delphi Magazine Issue 58

application programming with
WebBroker. After all, that was the
intention from the start. To demon-
strate using web controls, open a
new CGI web module. Add three
Action Items: Root, Background and
Chart. Make Root the default and
set PathInfo for the other two to
/Background and /Chart respec-
tively. In the OnAction events put
the code in Listing 8.

Next, add a TPageProducer to
the web module. Put the html
shown in Listing 9 in the strings
property.

The background and chart are
generated using HomeGrown’s
Web Controls:

<P><IMG SRC=
"http://127.0.0.1/cgi-bin/
project1.exe/Chart">

</BODY>
</HTML>

Now add a TWebRotatedLabel. Set
the Caption property to Web Con-
trols Demo. Set Relief to True, Angle
to 25, Color to clSilver and set the
font to something pleasing. I used
24 point Marking Pen in yellow. To
see the result of these settings
check the Output property.

Finally, drop a WebXYChart on the
form and set the size to 300x200. I
used ChartType := ctLine and Grid
:= gdBoth, but this is just my taste.

Again, check the
Output property to
see the result. You
can see the web
module in Figure 4.
I think you’ll agree
this is more like
the visual applica-
tion design we are
all used to!

procedure TWebModule1.WebModule1RootAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := PageProducer1.Content;

end;
procedure TWebModule1.WebModule1BackGroundAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentType := WebRotatedLabel1.ContentType;
Response.ContentStream := WebRotatedLabel1.ContentAsStream;

end;
procedure TWebModule1.WebModule1ChartAction(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

var
i: integer;

begin
// add some data for demo purposes
for i := 0 to 9 do WebXYChart1.AddData(i, i*i);
Response.ContentType := WebXYChart1.ContentType;
Response.ContentStream := WebXYChart.ContentAsStream;

end;

<HTML>
<HEAD>
<title>Web Controls Demo</title>
</HEAD>
<BODY Background="http://127.0.0.1/cgi-bin/project1.exe/Background">
<h1>Web Controls Demo</h1>

➤ Figure 3

➤ Figure 5

When you compile the applica-
tion and access it with a link to

<A HREF="http://127.0.0.1/
cgi-bin/project1.exe">

you will see the page in Figure 5.
Please note that the URLs shown
above and in the listings refer to a
local web server: you will need to
make sure the URLs reflect your
own server for this demo to run.

Conclusions
We now have three examples of
visual web controls at work. More
importantly, we have a class
framework that makes using most
visual components possible and
fairly simple. Although many con-
trols make little sense in a web
application, enough of them are
useful that I think visual compo-
nents are an improvement over the
‘out of the box’ WebBroker.

While little user interaction is
available, the possibilities for data
presentation are only limited by
our imaginations. There may be
other types of data such as text,
sound and multimedia that can be
handled using web components
and html methods. If I find new and
useful techniques I’ll be back to
share them with you.

Paul Warren runs HomeGrown
Software Development in
Langley, British Columbia, Can-
ada and can be contacted at
hg_soft@uniserve.com

➤ Above: Listing 8 ➤ Below: Listing 9

➤ Figure 4


	Wrap It Up
	TWinControl.PaintTo
	A Web Calendar
	A Rotatable Label
	Really Visual Web Controls
	A Web Chart
	Using Web Controls
	Conclusions

